

QENVI ROBOTICS Artificial Intelligence at your service

At the heart of innovation (AMR)

QENVI group presentation

Agrément CIR CR Agrément

The story of **QENVI** began in 2008 in the Sophia-Antipolis technology park near Nice/France.

The **QENVI** parent company is made up of experts:

- In support of Quality/Safety/Environment/Lean
 6sigma certifications
- business strategy
- In engineering services (IT, embedded, robotics, AI).
- QENVI has CIR approval

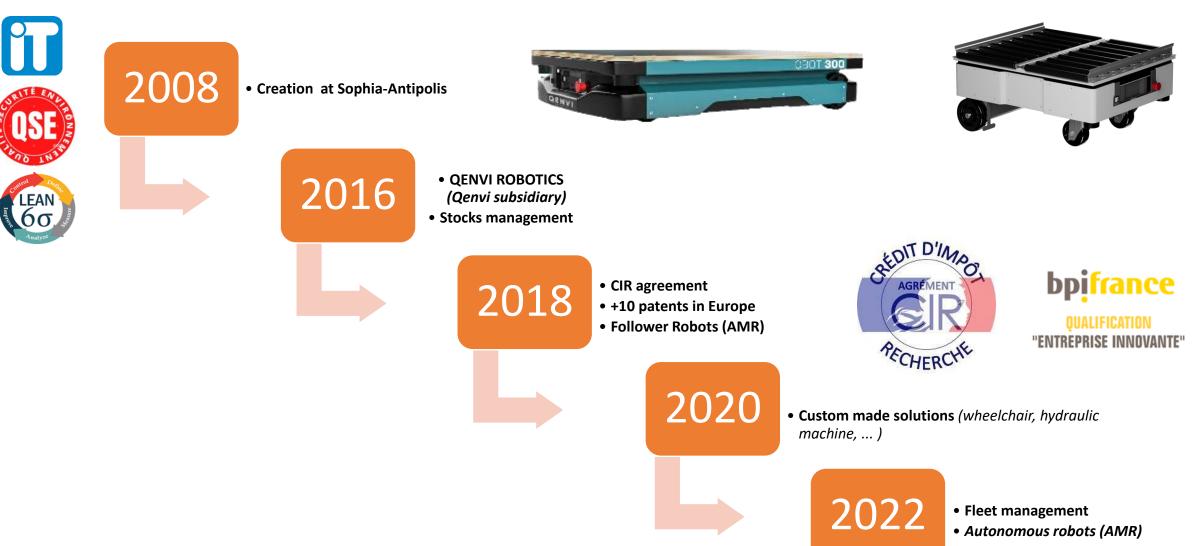
As part of its QSE/Lean 6 Sigma services, **QENVI** raises with its customers the problem of arduousness and its cost in industries, but also the lack of flexible load carrying solutions adapted to different processes.

QENVI

ROBOTICS

In 2016 QENVI created its subsidiary **QENVI Robotics** which offers its customizable standard robots which have tracking and/or autonomous functions that can carry loads of up to 150kg or 300kg.

QENVI Robotics develops custom-made robots for its customers that can carry up to 2 tonnes: wheelchair, stretcher, hydraulic machine, etc.


QENVI Robotics offers you its software for: Inventory management, Fleet management.

Patents filed in France and Europe (10 countries).

ROBOTICS

History

QENVI ROBOTICS Team

Laurent Van den Reysen

CEO and founder of QENVI and QENVI Robotics Ecole Centrale Lille, 32 years experience (SOPELEM, CAP GEMINI, PSA, ATOS ORIGIN, QENVI)

Artem - PHD robotic More than 15years of robotic experience . Software development: Development of signal processing, data acquisition or control applications Automation and Robotics: Position control, Admittance or Impedance Control, Neural Control, Localization Artem has joined QENVI in 2019

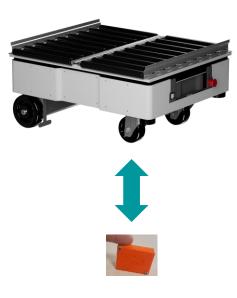
Marianne Ray, Business developer

UTT School of Technology University of Troyes: Mechanical Engineering, Specialized. production system design. MBway School (IPAC), MBA2: Title nv1: Manager of Commercial Development. International Development Specialty Marianne has joined QENVI in 2015

Technical teams:

The QENVI Robotics team is made up of 4 full-time robotics engineers/PHD and part-time engineers/PHD. The QENVI team is made up of more 35 consulting engineers/PHD who are passionate about IT, robotics, embedded and AI professions.

Cobotics : Following = human + robot


The cobot, or collaborative robot, is a robot intended to carry out work in collaboration with humans with the aim of freeing them from arduous tasks with low added value and improving their productivity.

An important segment of sector growth

Collaborative robots are the fastest growing elements of industrial automation

Easy installation

The installation of **cobots** is **simplified** and requires fewer arrangements. **Cobots** are deployed in open spaces and can adapt to their **environment**

A tool serving SER issues

Cobotics allows to respond to several issues within industrial companies

- Work accidents
- Musculoskeletal disorders among employees
- Lack of handling tools and ease of installation
- Lack of efficiency in movement operations
- The difficulty of recruiting
- Better acceptance

Robotics: AUTONOMY = robot

The autonomous robot replaces humans in repetitive tasks.

A very strong growing segment

Robots are the fastest growing elements of industrial automation. A very important ROI.

A setup to watch out for

Autonomous robots must be welcomed after a detailed analysis of the processes.

Their development environments must be studied and correspond to **standards**. No limit to a mapped environment, you can go outside.

An acceleration tool

- Work accidents
- Musculoskeletal disorders among employees
- Lack of handling tools and ease of installation
- Lack of efficiency in movement operations
- The difficulty of recruiting
- Almost total replacement of the workforce for impacted tasks
- Moe is reoriented towards tasks with greater added value

Our standard products: 2 customizable bases

They carry 150kg and 300kg and can be equipped with "following" and "autonomy" functionalities as desired or in combination.

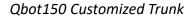
Small and handy, the Qbot150 allows optimized handling in the narrow aisles of your warehouse.

The "Qbot150" robot can carry your loads up to 150kg. (*) Battery life of 8 hours. Interchangeable rackmount battery mpressive and easy to handle, put the Qbot300 to the test when carrying your heaviest loads!

The "Qbot300" robot can carry your loads up to 300kg. (*) Battery life of 8 hours. Interchangeable rackmount battery

All QENVI Robotics robots are CE, machine, radio, BT and EMC certified. (see ISO3691-4 driverless trolley)

Examples of personalization



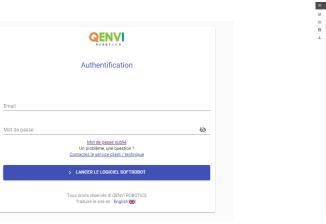
Qbot150 custom drop sides

Qbot150 Customized Trunk

Qbot150 Custom Rollers

Qbot150 Custom Rollers

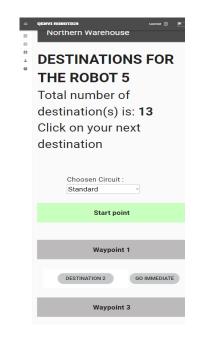
Wheelchair



QBOT-300

QBOT-300

Fleet management software



Mon Pars Col Persourier voi	iatīgue robots sulveurs etjisu autonomes				🛞 Connected alexain X				詳 Fittings Fittings units parts million(que
D Robot	Entropic	Ex mountment	Astanamia	lataria	Fau	Poblime			Rechercher un ID Robot
0	Warehouse 25	•-	en (m)	E ALLER RECHARCER © Autum point de recharge tiel m	 POINT DE PEU Dueun point de feu défini 	() Scear pauche	# DÉTAILS	(I) CANTES	
	Defeuit	-+	e =,	E ALLER BECHARGER E Autum point de recharge Célius	 Pomit de São Auque point de feu detre 	() Vilitar gauche	+ DÉTAUS	(Dicentes	
:	Warehouse 12		=	8 ALLER BECHARGER ® Ausur point de recherge défini	 Point of For Aucur point de feu défini 	\odot	w bétans	(Course)	
3	Warehouse II		=	E ALLER RECHARGER © Aucun point de recherge Célini	A FORT DE FOU D'Aucur point de les déter	\odot	- BÉTALS	II) CARTES	
•	Entropol Nord		n =)	E ALLER RECHARGER © Aucun point de recharge Célim	A Forst bil Feu D Augun geint de feu défini	\odot	- DÉTAUS	([CARTES	
5	Erropot Suddat	•-	e (11)	 ALLER RECHARGER Aucun point de recharge cáfini 	A POINT DE FEU D'Augun goint de feu défini	\odot	# DÉTAILS	([] CARTES	
•	Warehouse 25	•	e 🕤	 B. ALLER RECHARGER C. Ausun paint de recharge céllui 	 A Pomitica FEU € Aucun point de feu défini 	\odot	= DÉTALS	(CONTES	
•	Warehouse 22	•-	e 💬	E ALLER BECKARGER © Autum point de recharge défini	A Point of Fou € Augur point de fes défini	\odot	- DÉTAUS	(Contes	
,	Warehouse 25	•-	m (m)	E ALLER RECHARGER © Ausur point de recharge célfini	 Point de Feu Augun point de feu éétim 	Ø	- DÉTAUS	(Constant)	
10	Entropot Nord		n 🕤	 R. ALLER RECHARGER Ø Ausur point de recharge céllor 	 Point de Feu Aueur point de feu éétei 	\odot	- DÉTAUS	(Constant)	
12	Entropol Sub-Ent		e 🕤	E ALLER RECHANGER ALLER RECHANGER	POINT DE FEU Aucun point de feu défini	\odot	= DÉTAUS	III CARTES	

Warehouse 05 - Robot 0 Warehouse 05 - Robot 0 Work Noak NAUTER UNC ESTINATION @ AJOUTER UN FONT OF PASAER © 2006 DELIMITATION OF VIEESE (MOORE POSITIONE) @ AMORADA STREED WORK ROBALL (AJOUTER UN FONT OF PASAER) @ 2006 DELIMITATION OF VIEESE (MOORE POSITIONE) @ AMORADA Streed Building of the second of t

ROBOTICS

Choose QENVI Robotics:

QENV ROBOTICS

A high-end partnership for the modernization of your business:

We offer you unique solutions thanks to our tailor-made service.

A high-tech, easy-to-use solution to optimize your product movements and your most recurring tasks. Substantial return on investment (ROI): Saving time and reducing costs: - Reduction in micro-operations (monitoring); - Liberation of the resource (autonomy). - Transported loads increased tenfold for the same FTE. Increase in the added value of an employee's work.

Your winning partnership with QENVI Robotics

The QENVI Robotics team:

Our team made up of engineers and PHDs in robotics and AI is involved and attentive to your issues with tailor-made assistance and availability.

A secure and certified solution: QENVI is an expert in Quality / Safety / Environment support.

QENVI Robotics robots are equipped with emergency stop buttons, Lidars and sensors to detect and avoid obstacles. A Human solution: Reduction in arduousness and work accidents.

Reduction in MSDs (musculoskeletal disorders) and pain associated with manual work.

The Cobot helps humans, it does not replace them.

Increased employee satisfaction and reduced absenteeism.

- NF_EN_ISO_3691-4_driverless_handling_truck
- NF_EN_ISO_12100-2010_principleGeneralConception_risk
- NF_EN_ISO_13849-1_machine_safety

+

• European directives: Machine, BT, CEM, Radio

Laurent VAN DEN REYSEN, manager, expertise in quality:

- <u>https://www.qenvi.com/work/bootstrap/images/certificat_IRCA_ISO9001v2015_laurent_VANDENREYSEN.PDF</u>
- <u>https://www.qenvi.com/work/images/qenvi/certificat_IRCA_ISO14001v2015_laurent_VANDENREYSEN27022016.pdf</u>

QENVI ROBOTICS patent

https://worldwide.espacenet.com/patent/search/family/059014498/publication/EP3382488A1?q=3382488

Référence	Titre abrégé	Pays du dossier	Etat du dossier	Date de dépôt	Numéro de dépôt	Date de publication	Numéro de publication	Date de délivrance	Date d'expiration	Titulaire
B03683 FR	CHARIOT ROBOTISE	FRANCE	En vigueur	31/03/2017	FR.17/52774	05/10/2018	3.064.761	17/09/2021	31/03/2037	QENVI ROBOTICS
B03683 EP	CHARIOT ROBOTISE	EUROPE	Validé	02/06/2017	17174382.6	03/10/2018	3382488	11/08/2021	02/06/2037	QENVI ROBOTICS
B03683 EP BE	CHARIOT ROBOTISE	BELGIQUE	En vigueur	02/06/2017	17174382.6	03/10/2018	3382488	11/08/2021	02/06/2037	QENVI ROBOTICS
B03683 EP CH	CHARIOT ROBOTISE	SUISSE	En vigueur	02/06/2017	17174382.6	03/10/2018	3382488	11/08/2021	02/06/2037	QENVI ROBOTICS
B03683 EP DE	CHARIOT ROBOTISE	ALLEMAGNE	En vigueur	02/06/2017	17174382.6	03/10/2018	3382488	11/08/2021	02/06/2037	QENVI ROBOTICS
B03683 EP ES	CHARIOT ROBOTISE	ESPAGNE	En vigueur	02/06/2017	17174382.6	03/10/2018	3382488	11/08/2021	02/06/2037	QENVI ROBOTICS
B03683 EP FR	CHARIOT ROBOTISE	FRANCE	En vigueur	02/06/2017	17174382.6	03/10/2018	3382488	11/08/2021	02/06/2037	QENVI ROBOTICS
B03683 EP GB	CHARIOT ROBOTISE	ROYAUME-UNI	En vigueur	02/06/2017	17174382.6	03/10/2018	3382488	11/08/2021	02/06/2037	QENVI ROBOTICS
B03683 EP IT	CHARIOT ROBOTISE	ITALIE	En vigueur	02/06/2017	17174382.6	03/10/2018	3382488	11/08/2021	02/06/2037	QENVI ROBOTICS
B03683 EP MC	CHARIOT ROBOTISE	MONACO	En vigueur	02/06/2017	17174382.6	03/10/2018	3382488	11/08/2021	02/06/2037	QENVI ROBOTICS
B03683 EP NL	CHARIOT ROBOTISE	PAYS-BAS	En vigueur	02/06/2017	17174382.6	03/10/2018	3382488	11/08/2021	02/06/2037	QENVI ROBOTICS

Two functions available to choose **Q** from or in combination

	"Following" function	"Autonomy" function
Description	Allows your robot to follow you wherever you go.	Allows the robot to move autonomously within the establishment.
Starting the robot	Immediate: A simple button to turn this function on. The robot is operational immediately. It follows a beacon that you hold in all your travels.	Immediate: A simple button to turn on the robot. A device with a touch screen connected to the internet allows you to choose the desired destination in the establishment. When you select the destination on the screen, the robot moves autonomously to the chosen destination.
Infrastructure / preparations to be planned	No infrastructure required. No additional costs.	Intervention of the technical team to analyze your environment and implement the mapping of your establishment. Trips are programmable using fleet management software.
Travel environment	The robot can move indoors and outdoors.	The robot only works within the established map.
Security	A secure system with an emergency stop button and obstacle avoidance.	The robot detects, avoids obstacles and automatically learns them in order to integrate them into the map. Emergency stop button.
Velocity	The movement speed is adjustable and modulates according to nearby obstacles.	The movement speed is adjustable and modulates according to nearby obstacles.

How to calculate the forecast ROI for 1 Robot \rightarrow LEAN implementation

Value Stream Mapping

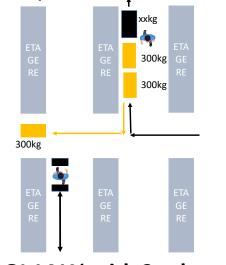
	Opération	Transfert	Contrôle	Attente	Stock				
ETAPE					$\mathbf{\nabla}$	Description	Distance (m)	Temps (sec)	Commentaire
1		0 🖈		V		Depuis établi vers stock	3	5	
2		•		1		Recherche de 2 membranes, tubes, supports, embouts		10	
3				V		Retour établi	3	5	
4		Ø		V		Dépôt sur établi		1	
5				V		Découpage		30	
6				V		Colle/graisse	1	5	
7				V		Collage/graissage extérieur		5	
8		0 🔿		7		Visserie préparée (sous établi)	0	30	
9						Vissage externe	0	10	
10						Dépôt sur établi		5	
11						Etau embouts 2 sur 4		10	
12				V		Perçage embouts 2 sur 4		10	
13				V		Changement perceuse		10	Batterie vide
14				V		Perçage embout		30	
15				V		Assemblage membrane		300	
16				V		Air comprimé	3	5	
17				V		Vissage air comprimé		20	Insuffisant
18				V		Vissage à la main (fin)		20	Pas de couple
19				V		Bouchons		30	
20		0 🔿	0	V		Etiquettes flèches + Dessalator		20	
21					Collage n° série + membrane		5		
22				V		Serrage tuyau		10	
23		0 4		V		Vers Stockage	3	20	
24		0 📫				Mise en stock		1	

Nature	Purpose of transformation	ASME Symbols			
Physical	Difference between raw form and form suitable for use	00			
Spacial	Location difference between provider and use	Transfert			
Temporal	Difference between date of acquisition and period of use	Stock			
Control	Difference between a reference (standard) state and the actual state				
	Use value	External / Internal			

Calculation of **TAKT Time** = cycle time

Calculation of **TRANSFER** costs (T or HJ, KM, KG, €)

- \rightarrow replacement by ROBOT (autonomy)
- \rightarrow implementation MONITORING
- \rightarrow Calculation of AT (work accidents)


Calcul du ROI

WHAT IS OUR SOLUTION?

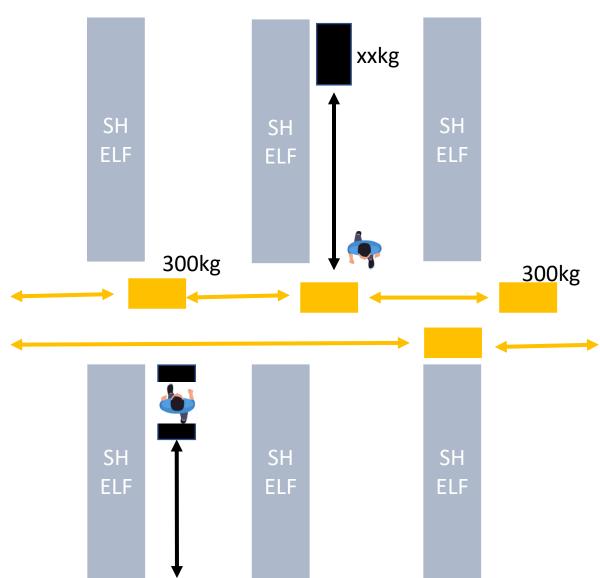
ZONE WITH QENVI WAREHOUSE -WAREHOUSE / NON-**OUTDOOR or "ALL** BEACON **STABLE MAPPING** MAPPED AREA **TERRAIN**" (EXTERIOR/INTERIOR) 300kg AUTONOMY FOLLOWING **REPETITIVE PROCESS** AUTONOMY FOLLOWING AUTONOMY OR AUTONOMY OR FOLLOWING FOLLOWING **PROCESSUS UNITAIRE** FOLLOWING FOLLOWING MISSION FOLLOWING FOLLOWING FOLLOWING FOLLOWING Mixed AUTONOMY OR AUTONOMY OR (Followup + TRAIN FOLLOWING FOLLOWING FOLLOWING FOLLOWING Autonomy)

Follow up

ROI 141% with 2 robots

xxkg **–** (•) 300kg 300kg 300kg 4

ROBOTICS Autonomy

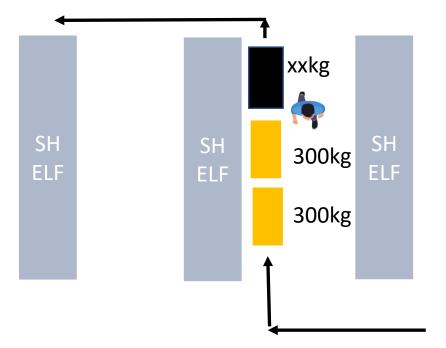

ROI 468%

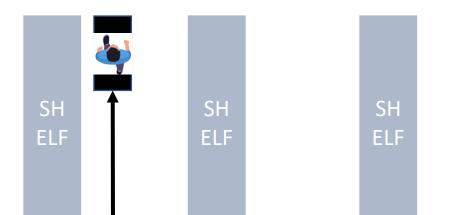
ROI 437%

Example: AUTONOMY scenario

A robot moves in a work area if a minimum clearance of 0.5m wide for a height of 2.1m is provided on both sides of the circuit (see ISO3691-4)

- In black:
 - QR carts or robots carrying xxkg circulating in the aisles
- In Orange:
 - QR robots circulate from meeting point to meeting point. Points previously described in the fleet management software
- The transfer of objects is done at each meeting point
- Autonomous robots could have these structures augmented with scissor systems:

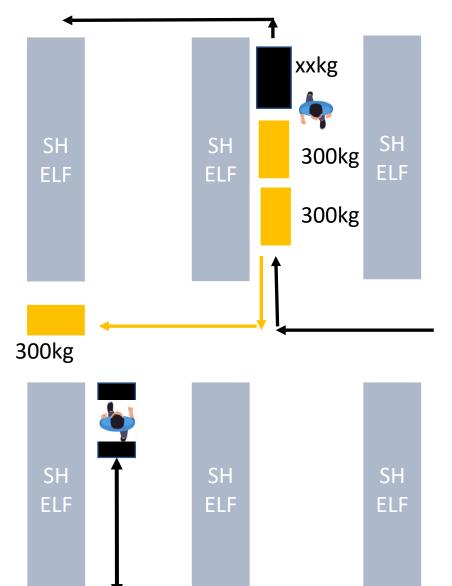




Example: FOLLOW-UP scenario

A robot moves in a work area if a minimum clearance of 0.5m wide for a height of 2.1m is provided on both sides of the circuit (see ISO3691-4)

- In black:
 - QR carts or robots carrying xxkg circulating in the aisles
- In Orange
 - QR robots follow the nacelles alone or by train
- The transfer of objects is done gradually
- Autonomous robots could have these structures augmented with scissor systems:

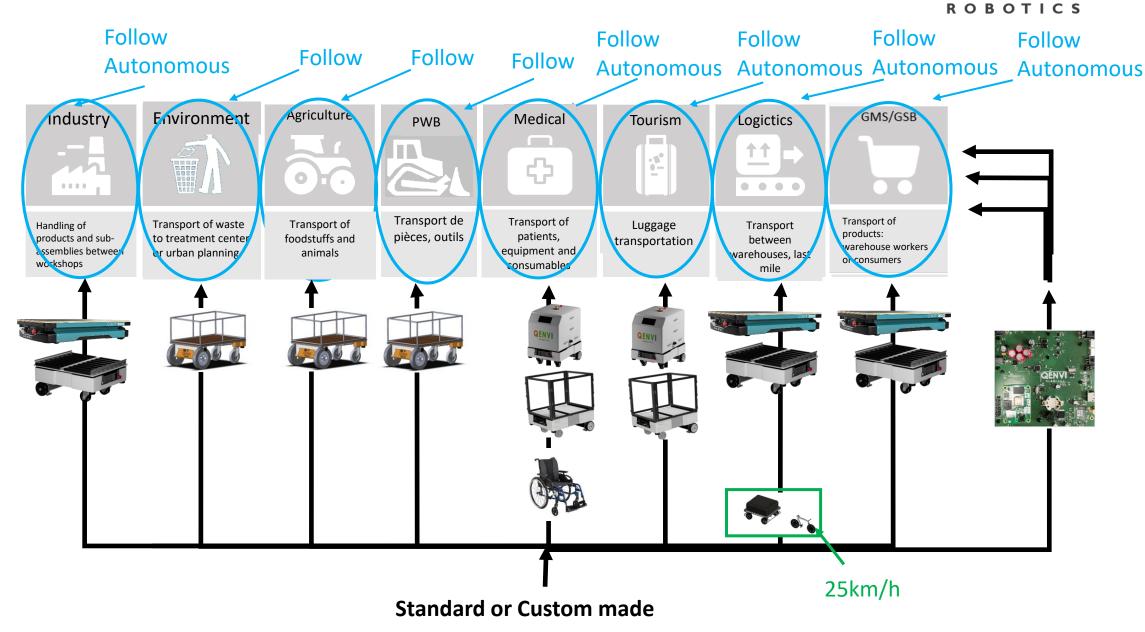



Example: MIXED scenario

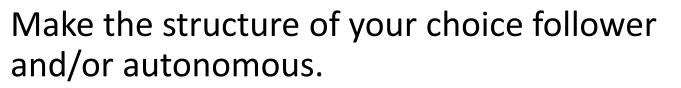
A robot moves in a work area if a minimum clearance of 0.5m wide for a height of 2.1m is provided on both sides of the circuit (see ISO3691-4)

- In black:
 - QR carts or robots carrying xxkg circulating in the aisles
- In Orange:
 - QR robots follow the nacelles alone or by train
 - QR robots return autonomously to a meeting point
- The transfer of objects is done gradually
- Autonomous robots could have these structures augmented with scissor systems:

How to calculate the forecast ROI for 1 Robot \rightarrow LEAN implementation



				EUROPE		1 hour	1 day = 7h	1 year	3 years	profit	robot cost HT (following)	-	maintenance cost (3 years)		ROI for 3 years
	maximum	weight		Average	walking	-									
	authorized	-	meters covered	-	-	•	walking	walking	walking				200€		
				Europe	(km / h)		•	transport cost	•				200€		
pedestrian man	80			33,0€		,			152 460,00 €						
pedestrian woman	25		1 429	33,0€	1,43	33,00€	231,00€	50 820,00 €	152 460,00 €						
	poids maximu		2 5 0 0	22.0.0	2.50	6.05.0	10.00.0	40 705 00 0	22.447.07.0	400 040 00 0	40.000.0	2 000 0	7 000 0	2 000 0	2520/
robot	155			33,0€				10 705,99 €		120 342,03 €					353%
robot	300	2679	3 500	33,0€	3,50	3,59€	25,14€	5 531,43 €	16 594,29 €	135 865,71 €	23 000 €	2 000 €	7 200 €	3 000 €	331%
woman															
robot	150	1339	3 500	33,0€	3 <i>,</i> 50	2,24 €	15,71€	3 457,14 €	10 371,43 €	142 088,57 €	18 000 €	2 000 €	7 200 €	3 000 €	433%
robot	300	2679	3 500	33,0€	3,50	1,12€	7,86€	1 728,57 €	5 185,71 €	147 274,29€	23 000 €	2 000 €	7 200 €	3 000 €	367%
	https://www.lsa-conso.fr/comment-ameliorer-les-conditions-de-travail-en-entrepot,270647														
	https://www.	insee.fr/fr/stati	stiques/4501675?	sommaire=4504	425										
	Average dista	nce traveled by	preparers in a day	,	10km	1429	m / 1 hour						300kg	Following earni	98 142,03 €
	Average weigh	nt transported p	er day		5 tonnes	714	kg/ 1 hour							ROI for 3 years	64%
			Average hourly	cost	14,60€										
			Average hourly	cost EUROPE	33,00€										
			SMIC horaire bru	ıt non chargé	11,07€										

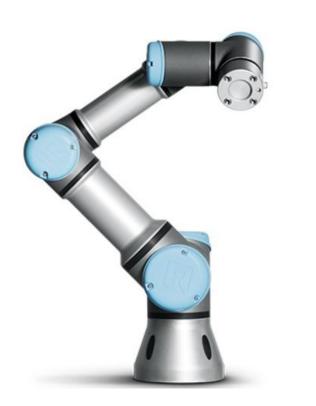

With a robot, carrying 300kg: 1kg carried for 1 hour costs €2.89 excluding purchase price

- In autonomy, the ROI is 300% over 3 years
- In follow-up, a person can have 2.39 times more transport capacity (ROI > 79%, 150% if 2 QR robots), fewer accidents, more acceptance and we are doing COBOTICS

QR positioning - Robot type by use

QR invites you to robotize the structure of your choice!

For loads up to 2 tonnes.


- 1- Send us your request and request a quote
- 2- QENVI Robotics studies your request
- 3- Send your structure to QENVI Robotics
- 4 QENVI Robotics robotizes then returns your new machine to you when it is ready.

QENVI Robotics has already robotized: wheelchairs, a hydraulic machine carrying 650kg.

Do you have other ideas? We can integrate the robotic modules of your choice

Example:

 \rightarrow Extension: Robotic Arms

We can integrate the ROBOTIC ARMS of your choice onto your robotic platforms following a study:

- Analysis of the carried load and arm length
- Several degrees of freedom of the arm
- Type of grip required
- Resistance and adaptation of the trolley to tilting

ROBOTICS

Thank you

<u>contact@qenvi.com</u> +33 4 22 13 54 67